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Recent mechanical models for cloth simulation have evolved toward accurate representation of elastic stiffness based on continuum mechanics, converging to
formulations that are largely analogous to fast finite element methods. In the context of tensile deformations, these formulations usually involve the linearization
of tensors, so as to express linear elasticity in a simple way. However, this approach needs significant adaptations and approximations for dealing with the
nonlinearities resulting from large cloth deformations. Toward our objective of accurately simulating the nonlinear properties of cloth, we show that this
linearization can indeed be avoided and replaced by adapted strain-stress laws that precisely describe the nonlinear behavior of the material. This leads
to highly streamlined computations that are particularly efficient for simulating the nonlinear anisotropic tensile elasticity of highly deformable surfaces.
We demonstrate the efficiency of this method with examples related to accurate garment simulation from experimental tensile curves measured on actual
materials.
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1. INTRODUCTION

The mechanical properties of cloth materials are highly anisotropic
and nonlinear: internal forces in the material are not at all propor-
tional to the deformations, and they furthermore vary greatly with
their orientation relative to the thread directions. This anisotropy
and nonlinearity create significant challenges when it comes to
defining a mechanical simulation system for accurately reproducing
these effects on virtual objects for applications requiring accuracy,
such as CAD systems. At the same time, interactive and virtual
reality applications require very efficient simulation models capable
of computing quickly enough in order to offer good reactivity to
user interaction.

Our goal is to be able to accurately simulate complex cloth ob-
jects, such as complete garments on animated characters (Figure 1).
Our contribution is to propose a new simulation model that accu-
rately reproduces the nonlinear tensile behavior of cloth materials
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and which remains accurate and robust for very large deformations,
while offering a very simple and streamlined computation process
suitable for high-performance simulation systems. Unlike the ma-
jority of existing cloth simulation models, we intend to match as
closely as possible, the actual behavior of cloth materials in large
deformations using accurate strain-stress curves depicting the weft,
warp, and shear tensile behavior traditionally considered in cloth
characterization. Our model addresses elasticity as well as viscos-
ity, making the model suitable not only for draping applications,
but also for dynamic motion computations, which require mechan-
ical damping. Finally we want to formulate this model as a simple
and direct force computation over point masses associated with the
vertices of an arbitrary triangle mesh. Hence, the model we pro-
pose is not much more complicated and time-consuming than the
simple mass-spring models that are typically used in fast cloth sim-
ulation, while offering significantly more accuracy. Through this
simple formulation, our model can be combined with the state of

ACM Transactions on Graphics, Vol. 28, No. 4, Article 105, Publication date: August 2009.



105:2 • V. Volino et al.

Fig. 1. The accurate simulation of complex garments requires mechanical models that precisely represent the nonlinear behavior of cloth materials.

the art numerical integration methods traditionally used with high-
performance particle systems, along with collision techniques, also
used in this context.

Our new computation scheme handles arbitrary triangle meshes,
which are typically generated from Delaunay triangulation. The pri-
mary insight of our method is that there is no practical interest in
linearizing expressions of a model intended to simulate essentially
nonlinear behaviors. Therefore, we express strains and stresses in
these elements according to the simple, however nonlinear Green-
Lagrange tensor, as is similarly done for representing Saint-Venant-
Kirchhoff materials. Our first contribution is to provide simple ex-
pressions relating material strain to particle positions, and material
stress to particle forces, from which an accurate and efficient com-
putation scheme can be obtained with simple and streamlined algo-
rithms. Furthermore, we also relate material strain rate to particle
velocities in the same manner, and this offers a new way of ac-
curately representing material viscosity. Another contribution is to
extend this representation through the use of nonlinear strain-stress
relationships, which can be modeled so as to accurately represent
the nonlinear behavior of cloth materials (Figure 2). Furthermore,
these formulations allow the computation of a symmetric Jacobian
of the elasticity forces without any approximations, offering high-
performance simulation through efficient implicit integration meth-
ods or relaxation schemes that remain stable and robust even in the
case of very large deformations. All these developments are ex-
pressed without excessively abstract formalisms in order to present
a simple-to-implement view of our method.

The model we present only addresses tensile viscoelasticity,
which deals with in-plane deformations. Meanwhile, bending elas-
ticity deals with out-of-plane deformations (surface curvature), and
its main visible effect is to limit fold curvature and wrinkle size.
In the context of high-accuracy simulations, our tensile model can
easily be complemented by a bending model using the schemes de-
fined by Grinspun et al. [2003] or Volino and Magnenat-Thalmann
[2006]. This is implemented in our system for producing the gar-
ments shown in Figure 1.

The remainder of this article is organized as follows. We first re-
view key issues and previous work in Section 2.1, and describe the
essential concepts of cloth viscoelasticity in Section 2.2. The com-
putation scheme is then detailed in Sections 3.1 and 3.2 and sum-
marized in Section 3.3. We demonstrate the accuracy and efficiency
of this scheme in Section 4, and finally conclude in Section 5. The
appendix explains how to accurately derive nonlinear strain-stress
relationships from tensile tests in the context of large deformations.

2. BACKGROUND

2.1 Mechanical Simulation Models

Early cloth simulation systems have been described as particle
systems—systems where mass is concentrated at moving points
called particles—and using forces directly derived from geometric
criteria about the relative positions of the particles. They have long
been of interest in the field of cloth simulation, and more gener-
ally in the field of interactive mechanical simulation, as they offer
a simple, intuitive and flexible way to model mechanical systems.
Furthermore, they can be used in conjunction with a large range of
numerical integration schemes, according to the desired features of
the simulation, for example, dynamic accuracy, convergence speed,
fast and approximate simulation, robustness. . .

The first particle systems for cloth simulation were grid-based
[Breen et al. 1994; Eberhardt et al. 1996], and already featured
the simulation of nonlinear behavior curves through formulations
that made them quite analogous to continuum mechanics models.
Their accuracy was however fairly limited for large deformations
and required quite long computation times. Faster models, based
on mass-spring grids, have become popular since fast implicit nu-
merical integration methods were used Baraff and Witkin [1998],
because they allow a simple expression of the Jacobian of the parti-
cle forces while requiring only simple computations [Desbrun et al.
1999; Meyer et al. 2001; Choi and Ko, 2002]. Combined with ad-
vanced implicit integration methods [Eberhardt et al. 2000; Hauth
and Etzmuss 2001; Volino and Magnenat-Thalmann 2005b], these
simulation schemes have become popular for real-time and inter-
active applications. Unfortunately, mass-spring systems are unable
to model surface elasticity accurately [Wang and Deravajan, 2005].
Although some techniques have been developed to match their pa-
rameters with those of the simulated material, they do not allow
full discrimination among deformation modes [Bianchi et al. 2004],
and they remain particularly inaccurate for anisotropic and nonlin-
ear models. Such issues have given Particle Systems a reputation
for inaccuracy.

On the other hand, finite elements have now acquired a good
maturity for mechanical simulation. Their traditional field of appli-
cation is elastic solid or shell modeling for mechanical engineering
purposes, a context where linear elasticity and small deformations
are the underlying assumptions. These formulations are not well
adapted to very deformable objects such as cloth, and early attempts
to model cloth using high-order elements [Eischen et al. 1996] led to
impractically high computation times. However, it has been shown
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Fig. 2. Accurate simulation of nonlinear anisotropic cloth materials is required for garment prototyping applications.

that the use of appropriate simplifications and efficient algorithms
can make them usable in interactive graphics applications.

Finite element methods proceed in several steps. First, a defor-
mation tensor is expressed at each point inside the elements, based
on the shape functions associated with the nodes. When linear shape
functions are used, the elements are called first degree, otherwise
they are called higher degree. The computer graphics community has
mainly considered first-degree elements, achieving a good compro-
mise between speed and accuracy. Besides this, linearity can occur in
two places in the finite element methods. The first, which we call ge-
ometrical linearity, is related to the way strains are computed from
node displacements. A straightforward choice is to use Cauchy’s
strain tensor, which is linear with respect to node displacements,
and leads to the fastest computations. However, large rotations gen-
erate well-known bulging artifacts. The most general way is to use
Green-Lagrange’s strain tensor, which is nonlinear with respect to
node displacements and handles large rotations without artifacts.
The other linearity, which we call material linearity, is related to the
physical properties of the material. Most models consider the linear
Hooke’s law relating strain and stress.

Numerous authors have attempted to accelerate the computations
required for finite elements. Pre-inverting the linear system matrix,
as done by Desbrun et al. [1999] for particle systems, may speed up
the computation [Bro-Nielsen and Cotin 1996; Cotin et al. 1999],
but is only practical when the mechanical system is small enough.
Condensing the dynamics on the boundary of a closed volume can
reduce the number of unknowns to solve at each time step [James
and Pai 1999]. These precomputations are possible when the force-
displacement relation is linear, which requires both geometrical and
material linearity.

Large rotations have been handled in two different ways. The
most straightforward is to use Green-Lagrange’s nonlinear strain

measurement, while keeping material linearity. This is called the
Saint-Venant-Kirchhoff model, mainly used in volume simulation
[Bonet and Wood 1997; O’Brien and Hodgins 1999; Zhuang and
Canny 2000; Debunne et al. 2001; Hauth et al. 2003; Picinbobo
et al. 2003; Barbic and James 2005].

The force-displacement behavior of Saint-Venant-Kirchhoff
models is less intuitive because of the nonlinearity of their strain
and stress tensors. Hence, their strain is not proportional to the de-
formation of the material and the exerted force is not proportional
to the stress. With strain-stress proportionality, the tensile force-
deformation curve of such a material is cubic (Figure 3). However,
their mathematical definition is the most mathematically natural way
of expressing strain and stress, and indeed the simplest, despite the
nonlinearity.

One drawback of this model is that it is not robust for soft materi-
als under large compression, since it is prone to collapse [Bonet
and Wood 1997, Figure 3]. Recently, a new approach has been
proposed, where the strain tensor is factored as the product of a
pure rotation with Cauchy’s linear strain tensor aligned along the
strain eigendirections [Muller et al. 2002; Hauth and Strasser 2004;
Muller and Gross 2004; Irving et al. 2004; Nesme et al. 2005]. This
corotational approach has become popular, as it combines the com-
putational simplicity of using the linear Cauchy tensor with large
deformations. This approach has been successfully used in cloth
simulation [Etzmuss et al. 2003b], but material nonlinearity was not
considered. The drawbacks of this method are mainly related to the
additional computations required for managing these rotations.

Meanwhile, cloth materials are usually not subject to large com-
pression, as their very low bending stiffness quickly allows them to
buckle, relaxing compression to lower values. Hence, the compres-
sion collapse behavior of Saint-Venant-Kirchhoff models is not an
issue in this context. It furthermore makes little sense to simulate
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Fig. 3. Tensile elongation force-deformation curve of a St.Venant-Kirchhoff material (red) compared to a linear material (blue). Global view (left) and close-up
(right). Notations correspond to the setup depicted in Figure 14. On the St.Venant-Kirchhoff material, we can note the collapse of the compression force for
large compression deformation.

a perfectly linear force-deformation behavior for cloth materials,
which are often highly nonlinear.

From this, we consider Saint-Venant-Kirchhoff models as being
best suited to our purposes, namely for simulating anisotropic and
nonlinear cloth materials under large deformations. They allow the
computation to be kept as simple as possible, while being able to
directly express the weft, warp, and shear stiffness, matching de-
formation modes used in traditional cloth characterization methods.
Whereas the cubic tensile force-deformation behavior (Figure 3)
is already a more realistic approximation of real cloth materials
(Figure 7) than a linear force-deformation behavior when using pro-
portional strain-stress laws. Our goal is to push accuracy a step fur-
ther by extending the model to arbitrary nonlinear strain-stress laws,
thereby allowing a very accurate fit to the actual nonlinear behavior
of cloth material.

2.2 Tensile Viscoelasticity of Cloth

From the theory of elasticity [Timoshenko and Goodier 1970; Gould
1993], the internal tensile deformation of a surface is characterized
by its strain, measured through a strain tensor, represented by three
independent values εuu, εvv , and εuv related to the coordinate system
(U, V) of the material. In dynamic systems, their rate is measured
though their time derivatives εuu

′, εvv
′, and εuv

′. The internal tensile
forces are characterized by its stress, modeled accordingly using a
stress tensor represented by three independent values σuu, σvv , and
σuv . The strain and stress values are related through the current en-
ergy per surface unit w of the material by the following relationships,
for any deformation mode m among (uu, vv , uv):

σm = ∂w

∂εm
. (1)

The relationship between strain and stress defines the mechan-
ical behavior of the material. In the most general context, this is

expressed through the following strain-stress relationship:

σuu
(
εuu, εvv, εuv, ε

′
uu, ε

′
vv, ε

′
uv

)
σvv

(
εuu, εvv, εuv, ε

′
uu, ε

′
vv, ε

′
uv

)
σuv

(
εuu, εvv, εuv, ε

′
uu, ε

′
vv, ε

′
uv

)
.

(2)

An isotropic material behaves identically irrespective of its orienta-
tion, and its strain-stress relationship does not depend on the orien-
tation of the coordinate system associated to the material.

In the case of linear viscoelasticity, the strain-stress relationship
can be expressed as a linear expression, the elastic and viscous
stiffness of the material being represented as symmetric matrices E
and E′: ⎡

⎣ σuu
σvv

σuv

⎤
⎦ = E

⎡
⎣ εuu

εvv

εuv

⎤
⎦ + E ′

⎡
⎣ ε′

uu
ε′

vv

ε′
uv

⎤
⎦ . (3)

In the particular case of isotropic linear elasticity, the behav-
ior of the material is only described with two parameters. Young’s
modulus, e, relates the stiffness of the material while the Poisson co-
efficient, ν, characterizes its transverse contraction upon extension
(Figure 4). The corresponding matrix is given by:

E = e
1 − ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ . (4)

While isotropic materials are well adapted for simulating homo-
geneous materials, cloth materials are mostly made of fibers that are
oriented along particular directions. Thus they are very unlikely to
exhibit the same stiffness in all directions. Therefore accurate repre-
sentation of cloth materials requires anisotropic models (Figure 5).
Among them, orthotropic models, which assume stiffness symme-
try along orthogonal fiber directions (symmetric radial stiffness di-
agram as in Figure 5, far left), are only suitable for cloth having
orthogonal fiber orientations with symmetric weave patterns.

Many simulation models exist for dealing with linear materials
[Etzmuss et al. 2003a,b]. However, through the complexity of their
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Fig. 4. A square piece of cloth attached at two opposite edges (far left), extended at 150% of its initial length. The material is linear isotropic, with a Poisson
coefficient ν of 0 (left), 0.25 (center), 0.50 (right). Color is used to visualize the transverse compression strain.

Fig. 5. A large square piece of cloth cut along various fiber directions, hanging attached at one edge (stripes are aligned to weft fiber direction). The material is
linear anisotropic (3), with 2 Euu,uu = 1 Evv,vv = 8 Euv,uv (far left, radial elongation stiffness diagram depicting the elongation stiffness value relatively to the
elongation orientation). This represents typical anisotropy of cloth materials, which usually have a much lower shear/elongation stiffness ratio than isotropic
materials. Strips show weft fiber direction. Color is used to visualize the average tensile strain.

Fig. 6. A large square piece of cloth, hanging attached at two corners. The material is isotropic, with linear (left) (red curve far left) and nonlinear (right)
(green curve far left) elongation strain-stress behavior. Color is used to visualize the average tensile stress (back) and strain (front). In both cases, there is a
high concentration of stress around the attachment points that support the weight of the whole cloth. With a linear strain-stress behavior, this creates locally
high strain, and therefore unrealistically large deformations in these areas. A nonlinear strain-stress behavior smoothes out the strain and the deformations are
much more evenly distributed over the cloth.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 105, Publication date: August 2009.



105:6 • V. Volino et al.

Fig. 7. Weft (left) and warp (right) elongation tensile test of a cloth material with several load-unload cycles of various amplitudes. The precise evaluation of
material plasticity requires a complex study of strain-stress hysteresis, far beyond the evaluation of the hysteresis envelope only.

structure, cloth materials have very nonlinear behaviors. The inter-
nal deformations of the materials produce internal forces that are
not proportional to the deformations. Linear strain-stress models
are only a crude approximation of the actual behavior of cloth ma-
terials and they quickly show their limits for large deformations, as
for instance the “superelasticity” artifact observed by Provot et al.
[1995] (Figure 6). Therefore, accurate cloth simulation requires non-
linear models for closely fitting simulated cloth behavior to actual
observed behavior, as measured through specific tensile tests (see
Appendix). Our main interest is to address the case of nonlinear ma-
terials through their most general strain-stress behavior (2), which
is needed for accurately representing the large-scale behavior of
structures that have high small-scale complexity, such as cloth.

While elastic forces oppose deformation, viscous forces oppose
deformation rate. Viscosity does not affect the rest geometry of the
cloth in static contexts (draping), but it contributes to the damping
of the cloth motion through energy dissipation.

In our model, through (2), viscosity is considered directly as a de-
pendency of the stress to strain rate, rather than through a viscosity
force opposing velocity, as in most existing models. This approach
allows a mechanically-consistent representation of viscosity that
may possibly be nonlinear, thereby allowing the modeling of com-
plex dissipative effects. Because there is no practical procedure for
measuring the actual tensile viscosity of cloth materials, viscous
parameters are typically empirically determined in order to obtain
realistic damping in the cloth motion.

Plasticity results from hysteresis in the strain-stress behavior of
the material. It is quite significant for cloth materials, and it mainly
results from the friction between the textile fibers. Like viscosity,
the primary observable effect of plasticity is the damping of cloth
motion caused by energy dissipation.

Our model can be extended to model plasticity through an ade-
quate processing of the strain-stress behavior. The easiest solution,
derived from Breen et al. [1994] is to modify the rest strain of the
strain-stress laws according to the current strain-stress state of the
system, simulating the solid friction between the fibers. More ad-
vanced models, which take into account time-dependent evolution
of the rest strain, could take advantage of models based on Prony se-
ries approximations [Soussou et al. 1970], which can reproduce the
quality factor of the hysteresis loops [Hauth et al. 2003]. However,
a precise modeling of plasticity requires an accurate knowledge of
the possibly time-dependent strain-stress behavior inside the hys-
teresis envelope, not only the envelope itself; this requires measuring
the tensile properties of the cloth materials with more sophisticated
procedures (Figure 7) than the single load-unload cycle usually per-
formed. The complete study of plasticity and its simulation is a topic
that is far beyond the scope of this work. Furthermore, the numer-
ical simulation is itself quite unpractical and expensive due to the

numerical problems caused by the high nonlinearity of hysteresis.
As a consequence, cloth simulation systems do not usually support
accurate simulation of plasticity.

While unnecessary in the context of cloth draping applications,
the accurate dynamic reproduction of cloth movement over time
requires significant damping to avoid unrealistic underdamped os-
cillations. Whereas viscosity cannot be explicitly measured in cloth
materials through simple and standard test procedures, it is nev-
ertheless a simple solution for reproducing the global dissipative
behavior caused by both plasticity and viscosity. In this context,
some techniques attempt to identify viscous parameters of cloth
materials by experimentally matching the simulated damping of its
motion to actual samples [Bhat et al. 2003].

In the developments that follow, we formulate our model for gen-
eral nonlinear anisotropic tensile viscoelasticity (2), which can also
be extended for hysteresis formulations, as for example through
Prony series. Adequate simplifications may then be carried out ac-
cording to the actual simulation context.

3. THE SIMULATION SCHEME

Starting from the most general anisotropic nonlinear viscoelastic
strain-stress relationship (2) describing the mechanical behavior of
the material, we present a simple computation scheme that can be
applied to meshes made of arbitrary triangle elements, such as those
obtained through Delaunay triangulation of arbitrary surfaces. We
consider these elements linear, having uniform geometrical and me-
chanical properties over the surfaces. Using the positions of mesh
vertices as the only degrees of freedom, we describe a simple com-
putation process to derive element strain from vertex positions and
vertex forces from element stress (Section 3.1), as well as the cor-
responding Jacobian (Section 3.2).

3.1 Computing Forces

Our algorithm processes triangle elements of the mesh describing
the surface (Figure 8 left). Each element is described by the 2D para-
metric coordinates (ua ,va),(ub,vb),( uc,vc) of its vertices, referring
to an orthonormal parametric coordinate system, which typically
aligned with the weft and warp fiber directions. The current posi-
tion of the deformed element is defined by the 3D world coordinates
Pa ,Pb,Pc of its vertices, and possibly velocity coordinates P ′

a ,P ′
b ,P ′

c .
The weft and warp vectors are expressed in 3D world coordinates
as U and V , which are not necessarily orthonormal because of ma-
terial deformation (Figure 8 right). In the following, these vectors
will be used for measuring the deformation state of the element, as
well as expressing any vector value related to the element in world
coordinates.
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Fig. 8. A triangle element is defined in 2D parametric coordinates (left), and deformed in 3D world coordinates (right).

Our goal is to compute the deformation state of a triangle element
directly from the positions of its vertices. To do this, we express the
parametric coordinate basis vectors (1,0) and (0,1) as translation-
independent weighted sums of the parametric coordinates of the
three vertices (ua ,va), (ub, vb), (uc,vc) (Figure 8 left). This leads to
the following linear systems:∑

i
rui ui = 1∑

i
rui vi = 0∑

i
rui = 0

∑
i

rvi ui = 0∑
i

rvi vi = 1∑
i

rvi = 0.

(5)

Solving these linear systems leads to the following weights, to be
precomputed:

rua = d−1 (vb − vc)
rub = d−1 (vc − va)
ruc = d−1 (va − vb)

rva = d−1 (uc − ub)
rvb = d−1 (ua − uc)
rvc = d−1 (ub − ua).

d = ua (vb − vc) + ub (vc − va) + uc (va − vb) (6)

During the simulation, these values are the weights for computing
the current 3D vectors U and V directly as a weighted sum of the
current vertex positions Pi (Figure 8 right), as follows:

U =
∑

i∈(a,b,c)

rui Pi V =
∑

i∈(a,b,c)

rvi Pi . (7)

When viscosity has to be considered in the context of dynamic
simulations, the current evolution rates of the coordinate vectors U′

and V′ can be computed as well from the current vertex velocities
P ′

i :

U ′ =
∑

i∈(a,b,c)

rui P ′
i V ′ =

∑
i∈(a,b,c)

rvi P ′
i . (7′)

Our model is based on the Green-Lagrange strain tensor, which
allows the rotation-invariant description of internal surface strain
in the context of large displacements. This symmetric tensor G is
defined by the coordinate vectors as follows, I being the identity
matrix representing the rest state:

G = 1
2 ([ U V ]T [ U V ] − I ). (8)

From this tensor, we can extract the weft warp and shear strain val-
ues, which respectively measure the elongation deformations along
weft warp directions and the shear deformation between them, as

follows:

εuu = 1
2

(
U T U − 1

)
εvv = 1

2

(
V T V − 1

)
εuv = 1

2

(
U T V + V T U

)
.

(9)

At this point, we can note that the strain is a quadratic expression of
the vertex positions. We do not attempt to perform any linearization
of these expressions.

Similarly, if viscosity is considered, the strain rate values are
computed accordingly:

ε′
uu = (

U T U ′)
ε′

vv = (
V T V ′)

ε′
uv = (

U T V ′ + V T U ′) .

(9′)

Having computed the strain state of the triangle surface, we can
now obtain the stress state by using the strain-stress relationship
(2), which characterizes the material of the surface.

The Green-Lagrange strain tensor is associated to the second
Piola-Kirchhoff stress tensor through (1). The forces derive from
energy [Bathe 1995]. Hence, the forces F j exerted on the vertex j
are computed by differentiation of the weft, warp, and shear com-
ponents of the total elastic energy W of the triangle relative to the
particle position P j . Since we assume linear deformation of the tri-
angle element, we have uniform strain, stress, and energy density w
over its surface of area }d }/2 (6). Hence we have, for any j among
(a,b,c):

Fj = − ∂W
∂ Pj

T

= −|d|
2

∂w

∂ Pj

T

= −|d|
2

( ∑
m∈(uu,vv,uv)

σm

(
∂εm

∂ Pj

T ))
.

(10)
With explicit expression of the derivatives of the Green-Lagrange
strain values (9) using (7), we obtain:

Fj = −|d|
2

(σuu (ru j U ) + σvv (rv j V ) + σuv(ru j V + rv j U )).

(11)
Direct implementation of (7), (9), (2), and (11) can be the basis
of an accurate simulator integrated using explicit numerical time-
integration methods, such as Runge-Kutta [Eberhardt et al. 1996].
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3.2 Computing the Jacobian

The Jacobian of the forces is necessary for implementing implicit
numerical integration methods [Baraff and Witkin 1998; Eberhardt
et al. 2000; Hauth et al. 2001; Volino and Etzmuss 2005], and any
other relaxation schemes based on Newton iterations. Its accurate
evaluation is necessary for good convergence and stability of state
of the art simulation systems.

The elastic Jacobian contribution is computed from (10) and (2)
as follows, for any i and j among (a,b,c):

∂ Fj

∂ Pi
= −|d|

2

⎛
⎜⎝ ∑

m∈(uu,vv,uv)
n∈(uu,vv,uv)

∂σm

∂εn

(
∂εm

∂ Pj

T ∂εn

∂ Pi

)

+
∑

m∈(uu,vv,uv)
n∈(uu,vv,uv)

∂σm

∂ε′
n

(
∂εm

∂ Pj

T ∂ε′
n

∂ Pi

)

+
∑

m∈(uu,vv,uv)

σm

(
∂

∂ Pi

∂εm

∂ Pj

T )⎞
⎟⎠ . (12)

A convenient and common approximation is to neglect the second
term of this expression. Doing this, we neglect how strain rate de-
pends on particle positions, and therefore how geometry variations
affect viscous forces. This allows the complete decoupling between
elasticity and viscosity components. This approximation does not
affect the accuracy of the Jacobian of elastic forces in the context
of very large deformations.

The viscous Jacobian contribution can be considered in the same
manner, noting that the second and third terms are zero as strain
values do not depend on particle velocities:

∂ Fj

∂ P ′
i

= −|d|
2

⎛
⎜⎝ ∑

m∈(uu,vv,uv)
n∈(uu,vv,uv)

∂σm

∂ε′
n

(
∂εm

∂ Pj

T ∂ε′
n

∂ P ′
i

)

+
∑

m∈(uu,vv,uv)
n∈(uu,vv,uv)

∂σm

∂εn

(
∂εm

∂ Pj

T ∂εn

∂ P ′
i

)

+
∑

m∈(uu,vv,uv)

σm

(
∂

∂ P ′
i

∂εm

∂ Pj

T )⎞
⎟⎠ . (12′)

With explicit expression of the derivatives of the Green-Lagrange
strain values (9) using (7), and with this approximation, we obtain
the following. For simplicity, we write it here without the contribu-
tions of the cross-dependencies between the deformation modes:

∂ Fj

∂ Pi
=−|d|

2

⎛
⎜⎜⎜⎝

∂σuu
∂εuu

(
ru j rui U U T

) + ∂σvv

∂εvv

(
rv j rvi V V T

)
+ ∂σuv

∂εuv

(
ru j rvi U V T + rv j rui V U T

)
+(σuu (ru j rui ) + σvv (rv j rvi )
+σuv (ru j rvi + rv j rui )) I

⎞
⎟⎟⎟⎠ (13)

and

∂ Fj

∂ P ′
i

= −|d|
2

(
∂σuu

∂ε′
uu

(ru j rui U U T ) + ∂σvv

∂ε′
vv

(rv j rvi V V T )

+∂σuv

∂ε′
uv

(ru j rvi U V T + rv j rui V U T )

)
. (13′)

It can be noted that using this approximation, the elastic and the
viscous Jacobian contributions are symmetric. This is an important

feature for using the conjugate gradient method in the numerical
solving scheme. They also have a regular structure, and the nu-
merical solving scheme should take advantage of this for efficient
numerical solving or sparse storage.

The expression of the elastic Jacobian contribution (13) has two
components:

—a stiffness component, which depends on the strain-stress stiffness
∂σ/ ∂ε;

—a geometric component, which depends on the stress value σ.

Meanwhile, the expression of the viscous Jacobian contribution
(13’) has only a stiffness component.

The elastic and viscous stiffness terms ∂σ /∂ε and ∂σ /∂ε′ are de-
rived from (2). It can be noted that in the context of linear viscoelas-
ticity (3), they are simply the elements of the stiffness matrices E.
and E′.

The stiffness component represents how the strain-stress stiff-
ness of the material acts in relationship to particle forces and posi-
tions. It is usually the most important component of the Jacobian.
Meanwhile, the geometric component represents the particle force
changes, which result solely from the evolution of the element ge-
ometry. For example, it represents the rotation of the particle forces
as the element rotates. A linearized model based on the Cauchy
tensor would not contain this geometric component.

In the context of small deformations, it often makes sense to ig-
nore the geometric component of the Jacobian, assuming that the
vectors U and V do not evolve far from their initial state. This
is what happens when using the Cauchy linear approximation of
the Green-Lagrange tensor, possibly addressing larger deformations
through the corotational approach [Etzmuss et al. 2003b]. However,
as pointed out by Choi and Ko [2002] in the context of mass-spring
systems, the full evaluation of the Jacobian is important for the sta-
bility of the simulation of large deformations as encountered in cloth
simulation, where elements may exhibit large orientation changes
within few iterations. Fortunately, through the use of the simple,
nonlinearized expression of the Green-Lagrange tensor, the expres-
sion of the geometric component is quite simple, and is furthermore
isotropic, as it does not depend on the current values of U and V.
Therefore, this approach is the best for performing stable simula-
tions of highly deformable nonlinear materials through the use of a
Jacobian accurately matching the actual deformed state of the me-
chanical system, whatever the amount of deformation (Figure 9).

A potential problem related to this expression results from the
possible negative eigenvalues that the isotropic Jacobian compo-
nent might introduce in the linear system matrix of the integration
scheme. While this is not a problem in the context of the accurate
linear system-solving schemes used in most finite element models,
it could potentially bring trouble if the conjugate gradient method is
used, such as in most interactive simulation system-using implicit
integration. There is little need to worry about the stiffness compo-
nent, as positive eigenvalues are ensured by the physical plausibility
of the material, given that forces usually monotonously oppose de-
formations. However, the geometric component is more likely to
generate negative eigenvalues, particularly when the material com-
pression state creates negative eigenvalues in the stress tensor. In
the context of cloth simulation, this is not really an issue as surface
buckling quickly absorbs large tensile compression. However, this
still needs to be addressed for obtaining an always-stable simula-
tion system, as highly compressed elements might always briefly
occur during simulation. While filtering out negative eigenvalues
from the global Jacobian is not a computationally practical option,
a formal, fairly conservative solution would be to filter out the neg-
ative eigenvalues of the stress tensor through adequate projection
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Fig. 9. An accurate Jacobian is necessary for stable simulation of very large deformations without compromising convergence speed. Color is used to visualize
the mean strain value, here with a maximum of more than 400% elongation.

of the σuu, σvv , σuv values to be used in the computation of the
geometric component. This is what Choi and Ko [2002] do with
mass-spring systems. In practice, we find that a sufficient approxi-
mation for ensuring stability is to use null values of σuu or σvv if
they are negative, thus avoiding any eigensystem computation.

3.3 Algorithm Summary

The computational process can be summarized in a ready-to-
implement manner as follows.
Precomputation:

—For each element, evaluate and store the vertex distribution factors
using (6).

Computation:

—For each element, evaluate the current material referential U and
V from Pa , Pb, Pc using (7).

—Compute the strain values εuu, εvv , εuv using (9).
—Compute the stress values σuu, σvv , σuv using the mechanical

behavior of the material (2).
—Compute the corresponding particle force contributions Fa , Fb,

Fc using (11).
—If needed, compute the Jacobian contribution using (13) with the

partial derivatives of (2).

3.4 Mass Lumping

A significant difference between finite elements and particle sys-
tems is that while the former accurately considers the mass of the
mechanical system distributed over the surface of the elements, the
latter concentrates the mass at discrete particle locations. Hence, the
mass of a uniform triangle element is distributed equally on its three
vertices. As a major benefit of this approximation, the inertia matrix
only contains diagonal elements, and this simplifies the mechani-
cal computations. This is why this approximation, known as mass
lumping, is also often considered in usual finite element models.

In our model, mass lumping is implemented by assigning to each
particle one third of the mass of all triangle elements adjacent to that
particle in the mesh. The mass of an element is the mass per unit
of area of the cloth material times the area, |d|/2, of the triangle.
Through this, our model can be thought of as an efficient particle
system.

4. PERFORMANCE

This model has been integrated in a cloth simulation system that
allows interactive editing of cloth objects and collision processing
for the creation and simulation of complete garments.

In our implementation, the mechanical model accepts indepen-
dent weft, warp, and shear elastic strain-stress curves modeled
as polynomial splines of any order. Possible cross-dependencies
among these modes are also accepted by our system, for instance
modeling transverse contraction. Viscosity is also modeled in the
same way. External forces include gravity, anisotropic viscous aero-
dynamic drag (wind), and collision effects (friction).

The resulting numerical system is integrated with backward Eu-
ler, implicit midpoint [Volino and Megnenat Thalmann 2005b] or
alternatively BDF-2 [Hauth and Etzmuss 2001] numerical integra-
tion methods for performing dynamic cloth simulations. For cloth
relaxation and draping applications, an iterative Newton resolution
scheme is also implemented, which finds the particle positions that
minimize the particle forces through the Jacobian. In any of these
implicit schemes, our implementation uses, for each iteration, the
Jacobian of the forces corresponding to the actual current state of
the system. This variable Jacobian scheme, which accurately cap-
tures all the nonlinearities of the system, is made possible through
on-the-fly evaluation of the Jacobian directly inside the numerical
solving of the computation iteration, which is performed using the
conjugate gradient method.

The computation code is written in standard C++ using double
precision floating-point, and the tests are performed on a 3GHz
Pentium4 PC.

4.1 Accuracy of the Model

Our accuracy test consists of simulating a virtual material described
by its weft, warp, and shear nonlinear strain-stress curves, modeled
from force-displacement curves of a tensile test. Through simula-
tion, we perform a virtual tensile test of the material, comparing the
resulting force-displacement curves to the experimental ones.

We performed this test using a 150 g/m 2 wool gabardine fabric,
which is a fairly nonlinear material, highly anisotropic with weak
shear stiffness.

We first measured the tensile weft, warp, and shear (along the
weft) force-elongation curves using a tensile tester on the normal-
ized 20 cm×5 cm sample. The averages of the load and unload
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Fig. 10. Comparing simulated weft, warp, and shear force-displacement curves with their counterparts defined in the model. With less than 0.01% difference,
the curves are practically identical. The virtual tensile setup is shown at bottom right.

curves, once converted into strain-stress curves according to the
formula given in the Appendix, are then modeled with polynomial
splines using three segments, 3rd-order for elongation and 2nd-order
for shear.

The virtual simulation of the experimental setup was then carried
out on a sample of 2500 triangles: The cloth rectangle was attached
along its two longest edges, and the total attachment force along
one edge was measured according to its displacement. No other
external force was considered and gravity was set to 0. Between
each state change, the cloth equilibrium was computed using the
Newton relaxation method.

The following force-displacement curves give the comparison
between the polynomial model modeling the experimental data and
the virtual test data. Note that the strain-stress curves are converted
back to force-displacement curves (Figure 10).

From these curves, we can see that the force-displacement
behavior produced by our simulation system precisely dupli-
cates the force-displacement model resulting from the strain-stress
polynomial spline model. The error remains below 0.01%, with
force differences below 0.01 N whereas total forces may exceed
100 N.

This illustrates the high accuracy that our model can provide
with nonlinear anisotropic materials undergoing large deformations.
Such accuracy is expected, since our model accurately represents
the mechanical constitutive laws of the material model through con-
tinuum mechanics without any approximation. Furthermore, since
the computation of the Jacobian is also exact, the model converges
in typically less than 10 iterations to reach the accuracy we attained,
and is limited only by the numerical floating-point accuracy of the
computations.

4.2 Real-World Accuracy

In order to verify the validity of our model for simulating cloth in
a real-world situation, we conducted an experiment comparing the
behavior of the real cloth with the simulated virtual cloth.

A piece of cloth was clamped horizontally on a circular frame
(30 cm diameter), with as little initial tension as possible. A vertical
force was exerted on a disk (6 cm diameter) placed in the middle of
the cloth. The vertical displacement of the disk was measured as a
function of the force (Figure 11). We chose a soft terry cloth, so as
to observe large displacements that could be accurately measured.
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Fig. 11. The experimental setup (top), and the virtual simulation (bottom left). Depending on the force exerted by the weight on the middle of the cloth, the
vertical displacement is plotted (bottom right), comparing the simulation (green curve) with the average of several experimental measurements (red dots with
error bars showing average deviation).

For the results, we averaged several measurement sequences,
which allows us to assess the accuracy of these measurements
through the computation of the standard deviation. Observed mea-
surement variations (around 10%) seem to result mainly from vari-
ations of the initial tension of the cloth on the frame, as well as
possible plasticity effects of the material between each measure-
ment. Strain-stress curves were accurately measured using tensile
tests (as described in the Appendix), modeled as three independent
(weft, warp, shear) polynomial splines (14) averaging the hysteresis
loop, then used in our simulation system.

The measured curve (Figure 11 bottom right) shows that our sim-
ulation can reproduce the real cloth with good accuracy. In addition
to the previously mentioned potential causes of error, the approxi-
mate modeling of the material could also be a source of error by not
taking into account possible dependencies between weft, warp, and
shear deformation modes, as discussed in the Appendix.

4.3 Computation Time

Computation times were measured on the dynamic simulation of
a 1m×1m cloth square (Figure 12), initially horizontal, attached
along one of its edges. Backward Euler integration was used
for numerical integration, with constant simulation timesteps of
10 milliseconds.

For comparison purposes, we also implemented the linearized
corotational scheme, obtained by rotation of the local element coor-
dinates to the eigendirections of the strain tensor and linearization
of the strain and stress expressions. It can be noted that the ex-

pression of the Jacobian is more complex because of the lineariza-
tion, and requires approximations because of the state-dependent
rotation.

We compared the computation time of our scheme and the lin-
earized corotational scheme for computing 100 timesteps of the
computation with several mesh resolutions. The material consid-
ered is a simple isotropic material (3), (4) of Young modulus e =
1000 N/m, and null Poisson coefficient ν = 0. We also compared
the computation time of a simple mass-spring system having springs
defined along mesh edges modeling a similar elastic stiffness.

From the results, our implementation of the model is able to iterate
more than 17, 500 elements per second. The linearized corotational
scheme is about two times slower. This slowdown does not only
result from the computation of the eigensystem for evaluating the
rotation, but also from the additional coordinate rotations, which ac-
count for a significant part of the total computation. This slowdown
would be more significant if anisotropic materials were considered.
Using a linearized scheme also requires additional vector normal-
izations (square roots), as well as a more complex, nonisotropic
geometric component in the exact expression of the Jacobian (13).
It should be noted that the numerical solving process, usually involv-
ing between 10 to 15 iterations of the conjugate gradient algorithm
for each timestep, also accounts for more than half of the total com-
putation time.

A simple mass-spring system is only marginally faster as com-
pared to our scheme, with 20,000 elements iterated per second.
Hence, our simulation scheme offers a significant increase in simu-
lation accuracy for approximately 15% additional computation.
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Fig. 12. Computation times required for the iterating the computation of 1m2 of cloth, using various mesh resolutions, using our simulation scheme, the
linearized corotational scheme, and a simple mass-spring scheme.

Tested under the same conditions as our simulation scheme, the
nonlinear anisotropic strain-stress behavior defined in the previous
section required roughly 10% additional computation.

4.4 Application: Virtual Prototyping

The proposed simulation technique has been implemented in a vir-
tual prototyping system, which allows for the design of complex
garments on mannequins. The efficiency of the model allows for
the simulation of accurate mechanical properties of cloth materi-
als on high-resolution meshes as the mannequin moves, allowing
the garment designer to assess the stretch forces for particular pos-
tures (Figure 13). The design of the garment patterns may then be
corrected accordingly, with interactive mechanical feedback on the
garment drape. The proposed simulation technique allows complex
multilayer garments to be simulated through an appropriate handling
of complex collision situations. With the use of appropriate implicit
integration methods, the model can efficiently compute both static
drapes and dynamic animations.

5. CONCLUSION

We have presented a novel cloth simulation system based on con-
tinuum mechanics. Through the use of the non-linearized Green-
Lagrange tensor, this model offers a simple and accurate way of
modeling nonlinear anisotropic materials such as of cloth under
large deformations, which can be obtained through the use of arbi-
trary strain-stress relationships.

The presented model offers considerable flexibility, and can be
viewed as a particle system, through simple explicit relationships re-
lating material strains and stresses to particle positions and forces.
It avoids intermediate computations as much as possible, such as
the coordinates transformations used in the corotational approach.
Thanks to this simplicity, the Jacobian of the forces can be eas-
ily expressed without approximation, for use with any appropriate
implicit numerical time integration method. This ensures not only
good performance, but also robustness, providing numerically stable
solutions even in the context of unrealistically large deformations.

The proposed simulation scheme is particularly well adapted for
applications that need to combine good mechanical accuracy with

computation times compatible with interactive applications. It is
therefore a very good candidate for garment prototyping applica-
tions which require accurate representation of nonlinear anisotropic
cloth material properties modeled from experimental data, thanks
to the ability to use arbitrary nonlinear strain-stress relationships. If
the computation was to be speeded up even more through the use
of simple linear strain-stress relationships, the resulting St.Venant-
Kirchhoff materials would still be better approximations of actual
cloth material behavior than the linear behaviors frequently obtained
in most existing fast simulation systems.

This highly streamlined computational process also opens the
doors for parallelization and hardware implementation, which,
through the rise of dedicated chips, represent the future of high-
performance mechanical simulation.

Appendix: Tensile Tests for Measuring Strain-Stress
Curves of Cloth

The tensile elastic behavior of cloth materials is usually charac-
terized by its tensile elasticity strain-stress relationship, measured
through adequate tensile tests. Standard procedures exist for char-
acterizing cloth properties. For instance, the Kawabata evaluation
system [Kawabata 1987] defines normalized hardware and tests for
measuring weft warp elongation and shear strain-stress curves. It is
important to note that the material is only considered through inde-
pendent curves relating weft and warp elongation and shear, with
no consideration of any possible cross-dependencies between defor-
mation modes, and also with no consideration of the deformation
rate (which is set to a single standard value). Then, the parameters of
the cloth are evaluated as a set of characteristic values quantifying
the shape of these curves. Since our concern is only related to the
strain-stress curves of tensile elasticity, we can exploit weft warp
elongation and shear curves measured by the Kawabata hardware
(Figure 14 left), or use other tensile tests that may capture more
complex behaviors in a wider range of deformations.

According to the Green-Lagrange tensor (8), The simplest and
most natural way to integrate measured curves into our computation
framework is to consider a simplified relationship between strain
and stress (2) expressed as three decoupled (weft, warp, and shear)
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Fig. 13. Virtual prototyping applications require an accurate representation of cloth material behavior for precisely evaluating the stretch forces (color scale)
on the garment in particular postures of the character (top). In this example, the high-resolution jacket mesh is modeled using 8 mm triangles. Pattern resizing
typically requires less than, one-minute computation for obtaining the corresponding drape. The computation of an animation typically requires between 5 to
20 minutes of computation per second of animation, collision processing accounting for the largest part of it.
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Fig. 14. Kawabata tensile tester (left): Notations for the elongation and shear tensile tests along the weft direction (right).
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Fig. 15. Converting a tensile force-deformation curve (left) in into a strain-stress curve (right) using the Kawabata standard sample size (lu = 0.05m, lv =
0.2m).

curves, as follows:

σuu (εuu)
σvv (εvv)
σuv (εuv) .

(14)

However, through the nonlinearity of the Green-Lagrange tensor
(8), the weft, warp, and shear strain and stress values cannot be di-
rectly identified to the measured force-deformation curves through
a simple linear transformation. The purpose of this section is to es-
tablish the adequate conversion formulas (Figure 15), which should
remain valid for large deformations.

For this, we consider a general tensile test (Figure 14 right), which
combines elongation and shear deformation. Kawabata tensile mea-
surements for elongation and shear are particular contexts of this
general test. Hence, the sample size being lu times lv , a displace-
ment of du elongation and dv shear would produce a force of fu

elongation and fv shear.

Through this deformation, the deformed weft and warp cloth co-
ordinate vectors are expressed as follows:

U =
(

lu + du

lu
,

dv

lu

)
V = (0, 1) . (15)

Using (9), we obtain the conversion formula from displacements to
strain values:

εuu = du

lu
+ d2

u + d2
v

2 l2
u

εuv = dv

lu
. (16)

We also obtain the conversion formula from stress values to forces:

fu = lv

(
σuu

lu + du

lu

)
fv = lv

(
σuv + σuu

dv

lu

)
. (17)

The forces are converted back to stress values as follows:

σuu = 1

lv

(
fu

lu

lu + du

)
σuv = 1

lv

(
fv − fu

dv

lu + du

)
. (18)
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It can be noted that such tensile tests are unable to measure com-
pression stiffness of cloth materials, since these buckle and exhibit
wrinkle patterns upon compression because of their low bending
stiffness. Nevertheless, cloth materials do have some compression
stiffness, which is indeed necessary for their buckling behavior.
Therefore, realistic cloth simulation requires compression stiffness
to be modeled. High-accuracy models are however not required,
since buckling allows relaxation and limits the actual cloth compres-
sion to low values. In practice, as compression stiffness is gener-
ally not measured, we typically extrapolate elongation strain-stress
curves to negative values using antisymmetric functions.

It can also be noted that elongation and shear measurements can
be carried out along both weft and warp directions (as done in the
Kawabata standard), leading to a total of four curves. However, the
mathematical definition of tensile deformation only allows its de-
scription as three independent values, that we have chosen in (14) to
be weft, warp, and shear, as defined by the Green-Lagrange tensor
(8) and (9). Assuming independence of the two elongation modes,
the two shear force-deformation curves cannot be unrelated, and
they should indeed produce identical shear strain-stress curves after
conversion (this should also be true in any case in the context of lin-
ear elasticity). Therefore, a mismatch between them indicates that
there is a significant nonlinear dependency between the deforma-
tion modes. In this case, accurate reproduction of the deformation
behavior would require a more complex strain-stress relationship
than only three independent curves.

More generally, some behaviors of the cloth material cannot be
evaluated using curves from the Kawabata tests only. These include
those resulting from the coupling of deformation modes, as for ex-
ample transverse shrinking (which, in the context of linear elasticity
(4), is represented by the Poisson coefficient (see Figure 4 in Sec-
tion 2.1). Also, nonsymmetric cloth behaviors (possibly caused by
nonsymmetric yarn patterns) need to be modeled with coupling be-
tween elongation and shear modes. It would be possible to evaluate
with better accuracy the nonlinear strain-stress behavior of a cloth
through more comprehensive force-deformation tests than what is
proposed in the Kawabata standard, by simultaneously combining
various values of elongation and shear deformations. Adequate in-
terpolation functions would then model this data as a general strain-
stress relationship (2) to be used as input in the proposed simulation
scheme.
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Discrete shells. In Proceedings of the Eurographics Symposium on Com-
puter Animation. 62–68.

HAUTH, M. AND ETZMUSS, O. 2001. A high performance solver for the
animation of deformable objects using advanced numerical methods. In
Proceedings of Eurographics. 137–151.

HAUTH, M., GROSS, J., AND STRASSER, W. 2003. Interactive physically-
based solid dynamics. In Proceedings of the Eurographics Symposium on
Computer Animation. 17–27.

HAUTH, M. AND STRASSER, W. 2004. Corotational simulation of de-
formable solids. In Proceedings of the Winter School of Computer Graph-
ics (WSCG). 137–145.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite elements
for robust simulation of large deformation. In Proceedings of the Euro-
graphics Symposium on Computer Animation. 131–140.

JAMES, D. AND PAI, D. 1999. ArtDefo–accurate real-time deformable
objects. Comput. Graph. (SIGGRAPH’99), ACM Press, 65–72.

KAWABATA, S. 1987. The Standardization and Analysis of Hand Eval-
uation. The Textile Machinery Society, Osaka, Japan.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 105, Publication date: August 2009.



105:16 • V. Volino et al.

KEEVE, E., GIROD, S., PFEIFLE, P., AND GIROD, B. 1996. Anatomy-based
facial tissue modeling using the finite element method. In Proceedings of
IEEE Visualization. 21–30.
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